
The Illusion Of
Execution

Nitsan Wakart (@nitsanw)
Lead Performance Engineer, Azul Systems

http://psy-lob-saw.blogspot.com

1

http://psy-lob-saw.blogspot.com

Thanks!

2

– Ford Prefect, Hitchhiker’s Guide To The Galaxy

“Time is an illusion, and lunch time doubly so.”

3

DON’T PANIC!!!

4

Write Once, Run?
• Developer writes Java code

• Compile/Pack/Deploy

• JVM executes the code on some hardware?

• … MAGIC! …

5

Memory is infinite!

SocketChannel accepted = serverSocket.accept();
Connection c = new Connection(accepted, messageSize);

6

Computation is Infinite!

SocketChannel accepted = serverSocket.accept();
Connection c = new Connection(accepted, messageSize);
new Thread(c, "Echo " + accepted.getRemoteAddress().toString()).start();

7

–Some Idiot I once worked with

“When I program, I program like a god,
as if resources are infinite!”

8

The Way Down
• Your code…

• Is run by a JVM…

• Which is a process of an OS…

• Which is running on some hardware…

Hardware is FINITE!

9

Hardware Illusions

10

Elastic Computing Power
• How many cores?

• Physical/Logical?

• Hyper Threading on/off (BIOS settings)

• What is the frequency of a given core?

• C/P-State (intel_idle.max_cstate=0, cpufreq)

• Turbo Boost

• Temperature

11

Hierarchical Memory
• How long does it take to read a value?

• Registers

• L1/L2/…/LLC

• NUMA

• How can the hardware help?

• Prefetch

• Branch prediction

12

So What?
• Know what you measure

• Consider configuration options that reflect your
requirements (disable C states/fix frequency)

• Performance counters(perf/likwid…):

• cache misses

• instruction counts

13

OS Illusions

14

Multi-Tasking
• More processes than cores

• Not an issue…

• … unless they all want to run at the same time

• Scheduling and interrupts

• Fairness

• Context Switching

• Next instruction is arbitrarily delayed

15

Virtual Memory
• How much memory can a process use?

• Resident vs Virtual Memory

• Swap

• When is memory disk?

• Page faults

• When is disk memory?

• Memory mapped files

• Page cache

16

Thread States - Linux

From: http://www.cs.rutgers.edu/~pxk/416/notes/17

http://www.cs.rutgers.edu/~pxk/416/notes/

So What?
• Avoid saturation

• More executing threads than cores (long run queue)

• More memory used than available (page faults, swap)

• Set swappiness=0, buy more memory

• Consider controlling resource allocation

• Use taskset/numactl/isocpus to reduce contention

18

JVM Process Illusions

19

The JVM Process: Threads
• How many threads for an application?

• Application Java threads (Main, Thread etc)

• Application native threads (native lib)

• JVM Threads (GC, Compiler, JMX, RMI…)

20

Threads Example
(Oracle JDK8u20, on i5/dual core laptop, no args)

• Application threads

• 4 GC Threads (ParallelGC)

• 3 Compiler threads (1 C1 + 2 C2)

• … and others (Reference Handler/Finalizer/JVM
Service…)

• 15 threads reported by jstack, 19 by OS

21

The JVM Process: Memory
• How much memory used if -Xmx1g?

• Heap

• Stack

• JVM

• Unmanaged

22

ZST - Zing System Tools
• Memory management module for fast page

mapping

• Java memory ‘taken’ upfront

• Blurring the JVM/OS line

23

So What?
• Avoid swap! configure for existing resources!

• Consider JVM threads/memory in estimates

• Configure GC/Compiler thread counts

• Monitor full process memory (not just heap)

24

Java Runtime Illusions

25

Code & JVM: Symbiosis
• Memory is managed!

• Reference accounting

• Hotspot compilation!

• Code mutation

• Managed Execution!

• The occasional pause…

26

Java Hidden Symbols

void copyPoint(oop p1, oop p2) {
 address a1 = readBarrier(p1);
 address a2 = readBarrier(p2);
 oop x = getObject(a2+xFieldOffset);
 putObject(a1+xFieldOffset, x);
 writeBarrier(a1, x);
 safepoint_poll();
}

void copyPoint(Point p1, Point p2) {
 p1.x = p2.x;
}

27

Safepoint
(noun.)

• A thread state

• Waiting/Idle/Blocked -> @Safepoint

• Running Java code -> !@Safepoint

• Running native code -> @Safepoint

http://blog.ragozin.info/2012/10/safepoints-in-hotspot-jvm.html
http://psy-lob-saw.blogspot.com/2014/03/where-is-my-safepoint.html
http://chriskirk.blogspot.ru/2013/09/what-is-java-safepoint.html

28

http://blog.ragozin.info/2012/10/safepoints-in-hotspot-jvm.html
http://psy-lob-saw.blogspot.com/2014/03/where-is-my-safepoint.html
http://chriskirk.blogspot.ru/2013/09/what-is-java-safepoint.html

When at a safepoint…
• Heap is not accessed

• GC time?

• Java code is not executed

• Code change time?

29

Global Safepoint
• All threads are @Safepoint -> no Java code is running

• JVMs use it for:

• Some GC phases

• Deoptimization

• Stack trace dump

• Lock un-biasing

• Class redefinition

30

You could cause a
Safepoint…

• On normal allocation (Young Gen exhausted)

• On large object allocation (Old Gen exhausted)

• On synchronized block (unbiasing)

• Profiler sampling

• Hitting cold code

31

TTSP - Time To Safepoint
• To bring JVM to global safepoint:

• Raise Safepoint ‘flag’

• Wait for ALL threads to reach Safepoint and stop

• Not included in GC Time

• ‑XX:+PrintGCApplicationStoppedTime

32

Where would sir like his
Safepoint?

• Safepoint poll inserted at:

• While loop back edge

• Method exit

33

Safepoint poll
implementation: OpenJDK

• Read from a special page:

 test DWORD PTR [rip+0xfffffffffe690e53],eax!

• JVM Sets the page to protected, polling threads
trap a SEGV and go to safepoint

• Look for {poll} or {poll_return} in the
assembly comments

34

Safepoint poll
implementation: Zing

• Read the thread local safe point flag:

 gs:cmp4i [0x40 tls._please_self_suspend],0

 jnz 0x500a0186; Where the safepoint code be!

• JVM Sets the thread flag to 1, polling threads hop
to

• Look for tls._please_self_suspend

35

How far to the nearest
Safepoint?

• Inlining removes end of method safepoints

• Safepoints can be delayed by:

• Long counted loops

• Large memory copies (System.arrayCopy/
Unsafe.copyMemory)

• Interrupted threads

• Page Faults

36

So what?
• High TTSP -> Long STW Pauses

• Global SP ‘Cost’ = threads * TTSP

• Global TTSP = MAX(Thread TTSP)

• Mind the gap:

• Mapped files write/read

• Big memory copy operations

• Very large counted loops

37

What’s an OOP?
• Ordinary Object Pointer

• Java: Object reference -> JVM: OOP

• Pointers to managed data on the heap

38

Memory Barrier
(not the JMM kind)

Memory Management Reference:
http://www.memorymanagement.org/glossary/b.html#term-barrier-1

“…a block [of code] on reading from or writing
to certain memory locations by certain threads

or processes.”

39

http://www.memorymanagement.org/glossary/b.html#term-barrier-1

Compressed OOPs
-XX:+UseCompressedOops

• Want large heaps (> 4G)

• Want 32bit OOPs

• Objects aligned to -XX:ObjectAlignmentInBytes=A (default is 8), K power
of 2 (8 -> K=3)

• Can compress OOP by dropping last K bits (>>K)

• Must decompress address to use it (<<K)

• Can use heap base to extend referable range (BASE + OOP<<K)

• Max referenced heap size is now 4G * A

https://wikis.oracle.com/display/HotSpotInternals/CompressedOops
40

https://wikis.oracle.com/display/HotSpotInternals/CompressedOops

Compressed Oops
Example(x86):

JAVA:
long v = this.l.longValue();

-XX:+UseCompressedOops:
mov r11d, DWORD PTR [rsi+0x10] ; r11d= this.l
mov r10, QWORD PTR [r12+r11*8+0x10]; r10= l.value

-XX:-UseCompressedOops:
mov r10, QWORD PTR [rsi+0x18] ; r10= this.l
mov r10, QWORD PTR [r10+0x10] ; r10= l.value

41

CompressedOops is a Read Barrier
(arguably)

• Must be decompressed before read ‘through’

• Can be copied without decompression

• Can be compared without decompression

42

LVB - Zing Read Barrier
• Will not fit in this talk, but…

• Looks like this

test8 rax,[gc_phase_trap_mask]; GC phase changed?

jnz 0x500d639b; GOTO LVB cold path

• Cold path: value has relocated

• Mutator will fix up the loaded value

• ‘Self healing’ - mutator participates in relocation

http://www.azulsystems.com/sites/default/files/images/c4_paper_acm.pdf

http://www.javaworld.com/article/2078661

43

http://www.azulsystems.com/sites/default/files/images/c4_paper_acm.pdf
http://www.javaworld.com/article/2078661

Card Marking
“The JVM maintains a card map, with one bit (or byte, in some

implementations) corresponding to each card in the heap.
Each time a pointer field in an object in the heap is modified,

the corresponding bit in the card map for that card is set.”

this.foo = bar;

int pagenum = pageFor(this);

byte[] CARD_TABLE;
CARD_TABLE[pagenum] = 0;

44

Card Marking is a Write
Barrier

• An optimisation for young collections

• Reduce the impact of OldGen size on scan time

• Introduce a small overhead

• Introduce false sharing? (-XX:+UseCondCardMark)

• Comes in different flavours!

45

CardMarking v1
(default)

; rsi is 'this' address
; rdx is setter param, reference to bar
; this.foo = bar
mov QWORD PTR [rsi+0x20],rdx
; r10 = rsi = this
mov r10,rsi
; r10 = r10 >> 9;
shr r10,0x9
; r11 is base of card table, byte[] CARD_TABLE
mov r11,0x7ebdfcff7f00
; Mark 'this' card as dirty
; CARD_TABLE[this address >> 9] = 0
mov BYTE PTR [r11+r10*1],0x0

46

CardMarking v1
(default)

this.bar = foo;
CARD_TABLE[addressOf(this) >> 9] = 0;

47

CardMarking v2
(-XX:+UseCondCardMark)

; rsi is 'this' address
; rdx is setter param, reference to bar
; r10 = this
mov r10,rsi
; r10 = r10 >> 9
shr r10,0x9
; r11 = CARD_TABLE
mov r11,0x7f7cb98f7000
; r11 = CARD_TABLE + (this >> 9)
add r11,r10
; r8d = CARD_TABLE[this >> 9]
movsx r8d,BYTE PTR [r11]
test r8d,r8d
; if(CARD_TABLE[this >> 9] == 0) goto 0x00007fc4a1071d7d
je 0x00007fc4a1071d7d
; CARD_TABLE[this >> 9] = 0
mov BYTE PTR [r11],0x0
0x00007fc4a1071d7d:
mov QWORD PTR [rsi+0x20],rdx ; this.foo = bar

48

CardMarking v2
(-XX:+UseCondCardMark)

if (CARD_TABLE[addressOf(this) >> 9] != 1){
 CARD_TABLE[addressOf(this) >> 9] = 0;
}
this.bar = foo;
!

49

CardMarking v3
(-XX:+UseG1GC)

 movsx edi,BYTE PTR [r15+0x2d0] ; read GC flag
 cmp edi,0x0; if (flag != 0)
 jne 0x00000001066fc601; GOTO OldValBarrier
Label WRITE:
 mov QWORD PTR [rsi+0x20],rdx; this.foo = bar
 mov rdi,rsi; rdi = this
 xor rdi,rdx; rdi = this XOR bar
 shr rdi,0x14; rdi = (this XOR bar) >> 20
 cmp rdi,0x0; If this and bar are not same gen
 jne 0x00000001066fc616; GOTO NewValBarrier
Label EXIT:
;…
Label OldValBarrier:
 mov rdi,QWORD PTR [rsi+0x20]
 cmp rdi,0x0; if(this.foo == null)
 je 0x00000001066fc5dd; GOTO WRITE
 mov QWORD PTR [rsp],rdi ; setup rdi as parameter
 call 0x000000010664bca0 ; {runtime_call}
 jmp 0x00000001066fc5dd; GOTO WRITE
Label NewValBarrier:
 cmp rdx,0x0; bar == null
 je 0x00000001066fc5f5 goto Exit
 mov QWORD PTR [rsp],rsi
 call 0x000000010664bda0 ; {runtime_call}
 jmp 0x00000001066fc5f5 ; GOTO exit;

50

CardMarking v3
(-XX:+UseG1GC)

oop oldFooVal = this.foo;
if (GC.isMarking != 0 && oldFooVal != null){
 g1_wb_pre(oldFooVal);
}
this.foo = bar;
if ((this ^ bar) >> 20) != 0 && bar != null) {
 g1_wb_post(this);
}

51

So What?
• References mean extra work (but usually not much)

• Impact can change by option/GC/JVM

• ‘Normalized’ data structures can help

• Inheritance vs. Composition

• Value Types might help(Java 9)

52

while(Q){
 A();
}
return;

53

