
Why GC is eating all my CPU?

Aprof - Java Memory Allocation Profiler

Roman Elizarov, Devexperts

Joker Conference, St. Petersburg, 2014

Java Memory Allocation Profiler

Why it is needed?

When to use it?

How it works?

How to use it?

Java

• Does not have stack-allocation, does not have
structs, does not have tuples…

• Promotes the “Object Oriented” style of
programming with lots of object allocations

– Most of which are only temporary → garbage

Garbage collection

Enjoy Java and GC

Until it becomes performance bottleneck

http://odetocode.com/Blogs/scott/archive/2008/07/15/optimizing-linq-queries.aspx

So, measure GC!

http://clearlypresentable.files.wordpress.com/2010/10/manage-measure.jpg

Use the tools…

…or use the logs and APIs

• Always use the following settings in prod:
 -XX:+PrintGCDetails
 -XX:+PrintGCTimeStamps

– So, you can always figure out % time spent in GC
by looking at your stdout.

• To figure it out programmatically, see
java.lang.management.GarbageCollectorMXBean

 Shameless commercial plug:

 That is the way we do it MARS product

How much is much?

• 10%+ time in GC – you start worrying

• 30%+ time in GC – you do something about it

http://upload.wikimedia.org/wikipedia/commons/4/4f/Scheibenbremse-magura.jpg

C/C++ Java

Use CPU Profiler

Find hot spots

Fix

Use CPU Profiler

Find hot spots

Wait! Allocation is FAST!
(does not consume CPU)

Troubleshooting

Object
Allocation

Garbage
Collection Causes

C/C++ Java

Object
Allocation

CPU
consumption Causes

malloc/free cost

Memory allocation profiling

• “-Xaprof” option in old JVM (<= 1.6)

– Prints something like this on process termination:

Allocation profile (sizes in bytes, cutoff = 0 bytes):

___________Size__Instances__Average__Class________________
 555807584 34737974 16 java.lang.Integer
 321112 5844 55 [I
 106104 644 165 [C
 37144 63 590 [B
 13744 325 42 [Ljava.lang.Object;
… <the rest>

Top alloc’d

That is where aprof project got its name from

Where memory is allocated?

Where memory is allocated? (1)

• Java

– new CName(…)

– new <prim>[…]

– new CName[...]

– new CName[…][…]…[…]

• Bytecode

– new

– newarray

– anewarray

– multianewarray

Fundamental ways to allocate memory

Quiz for audience: What else?

Allocate
memory

Since Java 1.0

Where memory is allocated? (2)

– Integer i = 1234;

– Integer i = Integer.valueOf(1234);

Boxing – syntactic sugar to allocate memory

Quiz for audience: What else?

Since Java 5

“Enhanced for loop” also desugars to method calls

Where memory is allocated? (3)

• java.lang.Object.clone
– Yet another true way of object allocation

• Reflection & deserialization
– Gets compiled into bytecode after a few invokes

but Array.newInstance needs separate care

• sun.misc.Unsafe.allocateInstance
– Could be tracked, but is not in current aprof

• JNI
– Can be tracked via native JVMTI

aprof is a pure Java tool now, does not track it

 Quiz for audience: What else?

Where memory is allocated? (4)

Captured

In new lambda

Since Java 8

Capturing Java 8 Lambda Closure

Let’s instrument bytecodes

java –javaagent:aprof.jar …

JVM API to write bytecode
instrumenting agents in Java

Define Premain-Class

Premain-Class: com.devexperts.aprof.AProfAgent
Boot-Class-Path: aprof.jar
Can-Redefine-Classes: true

aprof.jar!META-INF/MANIFEST.MF

Install transformer

That is what we need!

Ah… The secret sauce!

Manipulate bytecode with ASM

• ObjectWeb ASM is an open source lib to help

– Easy to use for bytecode manipulation

– Extremely fast (suited to on-the-fly manipulation)

ClassReader ClassVisitor ClassWriter

MethodVisitor

Instrument around bytecodes

Generate calls to profiling methods

New array bytecode
Needs length to
compute object size

Index of
location

invoke static
profiling method

Generate calls to profiling methods

Regular new object bytecode

Needs class to
compute object size

Example transformation

public int[] newArray(int);
 Code:
 0: iload_1
 1: newarray int
 3: areturn

 public int[] newArray(int);
 Code:
 0: iload_1
 1: dup
 2: sipush 4137
 5: invokestatic #31
 8: newarray int
 10: areturn

java –javaagent:aprof.jar=dump.classes.dir=dump …

Method com/devexperts/aprof/AProfOps.
intAllocateArraySize

Assigned index

return new int[n];

We cannot measure the system
without affecting it

Need to minimize measurement effect

Measure garbage without producing
garbage (do not allocate memory)

Garbage-free code?

[] Class-transformation

Only during load (don’t care)

[] Object-class size computation

Only once per class (don’t care)

[x] Count individual allocations

It has to be garbage-free

and it is (once all allocation locations were visited)

Count all allocations

Uses fast hash to keep one object per index;
Index enumerates (location, type) pairs

(http://elizarov.livejournal.com/tag/hash)

http://elizarov.livejournal.com/tag/hash
http://elizarov.livejournal.com/tag/hash
http://elizarov.livejournal.com/tag/hash

Compute object size

Array size

… very fast computation

Compute object size

Regular object size

… and cache the size for class

Precise and actual size (!)

Let’s try it

http://3.bp.blogspot.com/-vUgjzK5P-kQ/ToYOTLjqBTI/AAAAAAAAFu0/2ZGrGV9y0c4/s640/tumblr_komtamvGna1qzvjtno1_500.jpg

Big business app

Top allocated data types with locations

char[]: 330,657,880 bytes in 5,072,613 objects
 java.util.Arrays.copyOfRange: 131,299,568 bytes in …

aprof.txt

Oops! That is not informative
We knew that it will produce a lot of

char[] garbage in strings!

aprof agent

Need allocation context

Call stack:
• MyDataClass.getData(int)
• java.lang.StringBuilder.toString()
• Java.lang.String.String(char[], int, int)
• Java.util.Arrays.copyOfRange(char[], int, int[])
• new char[]

But it is allocated here

We want this location

Aprof Tracked Methods
java –jar aprof.jar export details.config

…
java.lang.StringBuilder
 <init>
 append
 appendCodePoint
 ensureCapacity
 insert
 setLength
 subSequence
 substring
 trimToSize
 toString
…

details.config

Java RT methods that might
allocate memory

How it is done?

• Tracked via thread-local instance of class
com.devexperts.aprof.LocationStack

• Local variable is injected into

– methods that allocate memory

– methods that invoke tracked methods

– tracked methods themselves

• Local variable is initialized on first use

 public int[] newArray(int);
 Code:
 0: aconst_null
 1: astore_2
 2: iload_1
 3: dup
 4: aload_2
 5: dup
 6: ifnonnull 15
 9: pop
 10: invokestatic #25
 13: dup
 14: astore_2
 15: sipush 4137
 18: invokestatic #31
 21: newarray int
 23: areturn

Example transformation (actual)

LocationStack stack = null; // local var

If (stack == null)
 stack = LocationStack.get();

return new int[n];

Looks scary

… But fast in practice
– Long-running methods retrieve LocationStack

from ThreadLocal only once

– HotSpot optimizes this code quite well

– It only affects code that does memory allocations
or uses tracked (memory allocating!) methods

– Does not allocate memory during stable operation

It has no performance impact on dense
garbage-free computation code,

various getters, etc

Big business app

Top allocated data types with reverse location traces

char[]: 330,657,880 bytes in 5,072,613 objects
 java.util.Arrays.copyOfRange: 131,299,568 bytes in …
 java.lang.StringBuilder.toString: …
 MyBusinessMethod: …
 … (more!)

aprof.txt

aprof agent

Got you!

Actual call stack:
…
• MyBusinessMethod
• java.lang.StringBuilder.toString()
• Java.lang.String.String(char[], int, int)
• Java.util.Arrays.copyOfRange(char[], int, int[])
• new char[]

Aprof dump vs actual call stack

Top allocated data types with reverse location traces

char[]: 330,657,880 bytes in 5,072,613 objects
 java.util.Arrays.copyOfRange: 131,299,568 bytes in …
 java.lang.StringBuilder.toString: …
 MyBusinessMethod: …
 … (more!) At most 4 items are displayed in aprof dump

(1) Type that was allocated

(2) Where it was allocated

(1)
(2)

(3) Outermost tracked method

(4) Caller of the outermost tracked method

(3)
(4)

But what if

… caught MyFrameworkMethod allocating
memory instead?

Add it to tracked methods list

java –javaagent:aprof.jar=track=MyFrameworkMethod …

java –javaagent:aprof.jar=track.file=details.config …

a)

b)

Repeat

Poor man’s catch-all

java –javaagent:aprof.jar=+unknown …

Injects the profiling code right into
java.lang.Object constructor

• Does some mental accounting to exclude allocation
that were already counted, reports the difference

• The difference can appear from JNI object
allocations. But location is unknown anyway.

• Does not help with tracking JNI array allocations at
all (no constructor invocation)

Top allocated data types with reverse location traces

java.util.ArrayList$Itr: 32,000,006,272 bytes …
 java.util.ArrayList.iterator: 32,000,006,272 bytes …
 IterateALot.sumList: 32,000,000,000 bytes …

Iterator is allocated here

java -XX:+PrintGCDetails -XX:+PrintGCTimeStamps …

Shouldn’t GC work like hell?

[PSYoungGen: 512K->400K(1024K)] 512K->408K(126464K)
[PSYoungGen: 912K->288K(1024K)] 920K->296K(126464K)
[PSYoungGen: 800K->352K(1024K)] 808K->360K(126464K)
[PSYoungGen: 864K->336K(1536K)] 872K->344K(126976K)
[PSYoungGen: 1360K->352K(1536K)] 1368K->360K(126976K)
[PSYoungGen: 1376K->352K(2560K)] 1384K->360K(128000K)
[PSYoungGen: 2400K->0K(2560K)] 2408K->284K(128000K)
[PSYoungGen: 2048K->0K(4608K)] 2332K->284K(130048K)

And that is it! No more GC!
What is going on here?

HotSpot allocation elimination

Deep
inlining

Escape
analysis

Allocation
elimination

Aprof allocation elimination checking

java –javaagent:aprof.jar:+check.eliminate.allocation
-XX:+UnlockDiagnosticVMOptions -XX:+LogCompilation …

Top allocated data types with reverse location traces

java.util.ArrayList$Itr: 32,000,006,272 bytes …
 java.util.ArrayList.iterator: 32,000,006,272 bytes …
 IterateALot.sumList: … ; possibly eliminated

1. HotSpot writes hs_xxx.log files
2. Aprof parses them to learn

eliminated allocation locations

Additional options/features

• histogram – track array allocation separately
for different size brackets

• file – configure dump file, use #### in file
 name to auto-number files

• file.append – append dump to file every,
 instead of overwriting

• time – time period to write dumps,

 defaults to a minute

Advanced topics

• Profiling the profiler
– aprof records and reports its own allocations

• Retransforming classes that were loaded
before aprof Pre-Main had even got control

• Caching of class meta-information for each
class-loader
– for fast class transformation

• Aggregate classes with dynamic names like
“sun.reflect.GeneratedConstructorAccessorX”
– to avoid memory leaks (out of memory)

The source

https://github.com/devexperts/aprof

GPL 3.0
Your contributions are welcome

Known issues

• Lambda capture memory allocations are not
tracked nor reported in any way
– Need to track metafactory calls and unnamed classes

it generates

• Java 8 library methods (collections, streams, etc)
are not included into default list of tracked
methods
– Need to work through them and include them

• JNI allocations are not properly tracked
– Need to write native JVMTI agent to track them

Where you can help

Questions?
Feedback?

aprof@devexperts.com

elizarov@devexperts.com

mailto:aprof@devexperts.com
mailto:elizarov@devexperts.com

