
Integration Testing
from the Trenches

Nicolas Fränkel October 2014

2 https://leanpub.com/integrationtest

Me, myself and I

Developer & Architect as consultant
Wide range of businesses & customers

Teacher & Trainer

Speaker

Blogger
http://blog.frankel.ch/
(http://morevaadin.com/)

3 https://leanpub.com/integrationtest

Also an author

4 https://leanpub.com/integrationtest

Plan

Integration Testing
What is that?
Challenges
Solution hints

Testing with resource dependencies
Database
Web Services

Testing In-container
Spring & Spring MVC
JavaEE
hybris

Definitions

6 https://leanpub.com/integrationtest

There are many different kinds of testing

Unit Testing

Mutation Testing

Integration Testing

GUI Testing

Performance Testing
Load Testing
Stress Testing
Endurance Testing

Security Testing

etc.

7 https://leanpub.com/integrationtest

Unit Testing vs. Integration Testing

Unit Testing
Testing a unit (i.e. a class) in
isolation

Integration Testing
Testing the collaboration of
multiple units

"S
av

at
e

fo
ue

tté
 fi

gu
re

 1
" b

y
D

an
ie

l -
 P

ho
to

 D
an

ie
l.

8 https://leanpub.com/integrationtest

A concrete example

Let’s take an example
A prototype car

"2
01

1
N

is
sa

n
Le

af
 W

A
S

 2
01

1
10

40
" b

y
M

ar
io

rd
o

M
ar

io
 R

ob
er

to
 D

ur
an

 O
rti

z
- O

w
n

w
or

k

9 https://leanpub.com/integrationtest

Unit Testing

Akin to testing each nut
and bolt separately

10 https://leanpub.com/integrationtest

Integration Testing

Akin to going on a test
drive

"U
R

E
05

e"
 b

y
M

ar
vi

n
R

aa
ijm

ak
er

s
- O

w
n

w
or

k.

11 https://leanpub.com/integrationtest

Unit Testing + Integration Testing

Approaches are not
exclusive but
complementary
Would you take a prototype
car on test drive without
having tested only nuts and
bolts?
Would you manufacture a car
from a prototype having only
tested nuts and bolts but
without having tested it on
numerous test drives?

12 https://leanpub.com/integrationtest

System Under Test

The SUT is what get
tested

Techniques from Unit
Testing can be re-used
Dependency Injection
Test doubles

13 https://leanpub.com/integrationtest

Testing is about ROI

The larger the SUT
The more fragile the test
The less maintainable the test
The less the ROI

Thus, tests have to be
organized in a pyramidal
way
The bigger the SUT
The less the number of tests

Integration Testing
Test standard cases
Generally not error cases ht

tp
://

m
ar

tin
fo

w
le

r.c
om

/b
lik

i/T
es

tP
yr

am
id

.h
tm

l

14 https://leanpub.com/integrationtest

Integration Testing Challenges

Brittle
Dependent on external
resources
�  Database(s)
�  etc.

Slow
Dependent on external
resources

Hard to diagnose

15 https://leanpub.com/integrationtest

How to cope

Separate Integration
Tests from Unit Tests

Fake required
infrastructure resources

Test in-container

16 https://leanpub.com/integrationtest

But IT are still slow?!

Separating UT & IT
doesn’t make IT run
faster

But you can uncover
errors from UT faster
Fail Fast
It will speed testing

"G
ep

ar
dj

ag
t2

 (A
ci

no
ny

x
ju

ba
tu

s)
" b

y
M

al
en

e
Th

ys
se

n
- O

w
n

w
or

k.

17 https://leanpub.com/integrationtest

Integration Testing and build

Available tools
Ant
Maven
Gradle
etc.

N
ew

 D
ev

el
op

m
en

t R
ec

en
tly

 F
in

is
he

d
on

 B
ris

to
l's

 C
ity

 C
en

tre
 b

y
B

riz
zl

eb
oy

18 https://leanpub.com/integrationtest

Maven lifecycle

…

compile

…

test

…

pre-integration-test

integration-test

post-integration-test

verify

…

19 https://leanpub.com/integrationtest

Reminder on Surefire

Bound to the test phase

Runs by default
*Test
Test*
*TestCase

20 https://leanpub.com/integrationtest

Failsafe

“Copy” of Surefire

Different defaults
*IT
IT*
*ITCase

One goal per lifecycle
phase
pre-integration-test
integration-test
post-integration-test
verify

Must be bound explicitly

21 https://leanpub.com/integrationtest

Binding Failsafe - sample

<plugin>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>2.17</version>
 <executions>
 <execution>
 <id>integration-test</id>
 <goals>
 <goal>integration-test</goal>
 </goals>
 <phase>integration-test</phase>
 </execution>
 <execution>
 <id>verify</id>
 <goals>
 <goal>verify</goal>
 </goals>
 <phase>verify</phase>
 </execution>
 </executions>
</plugin>

22 https://leanpub.com/integrationtest

Continuous Integration

Needs a build configured

Suggestions
Unit Tests run at each commit
Integration Tests run “regularly”
�  Daily
�  Hourly
�  Depending on the context

Infrastructure resources

24 https://leanpub.com/integrationtest

Infrastructure dependencies

Database

Filesystem

Time

Message Oriented
Middleware

Mail server

FTP server

etc.

25 https://leanpub.com/integrationtest

Mocks and infrastructure dependencies

To test your Service
Mock your DAO/repository
�  Mockito

To test your DAO/repository
Mock your database???

26 https://leanpub.com/integrationtest

Simple database use-case

Oracle database
Use an in-memory datasource
and hope for the best
Use Oracle Express and hope
for the best
Use a dedicated remote
schema for each developer
�  And your DBAs will hate you

27 https://leanpub.com/integrationtest

Reducing database gap risk

In-memory databases are easy to
setup

h2 is such a database
(successor of HSQL)
Compatibility modes for most
widespread DB
�  jdbc:h2:mem:test;MODE=Oracle

28 https://leanpub.com/integrationtest

Parameterizing properties

Update
local.properties
db.url=

db.driver=

db.username=

db.password=

And use your favorite
build tool
Maven
�  Resource filtering

Ant
Gradle

29 https://leanpub.com/integrationtest

Integration Testing with Web Services

Web Services also are an
infrastructure resource
Hosted on-site
Or outside

Different Web Services
types have different
solutions
RESTful
SOAP

30 https://leanpub.com/integrationtest

Faking RESTful WS

Require an HTTP server

Requirements
Easy setup
Standalone
Embeddable in tests

Spring MVC?
Requires a servlet container
�  (Not with Spring Boot)

Some code to write

A
ut

ho
r:

D
w

ig
ht

 S
ip

le
r f

ro
m

 S
to

w
, M

A
, U

S
A

31 https://leanpub.com/integrationtest

Spark to the rescue

Micro web framework
A la Sinatra
http://www.sparkjava.com/
Very few lines of code
Just wire to serve JSON files

32 https://leanpub.com/integrationtest

Spark sample

import static spark.Spark.*;
import spark.*;

public class SparkSample{
 public static void main(String[] args) {
 setPort(5678);
 get("/hello", (request, response) -> {
 return "Hello World!";
 });
 get("/users/:name", (request, response) -> {
 return "User: " + request.params(":name");
 });
 get("/private", (request, response) -> {
 response.status(401);
 return "Go Away!!!";
 });
 }
}

33 https://leanpub.com/integrationtest

Faking SOAP web service

Possible to use Spark for SOAP
But unwieldy

34 https://leanpub.com/integrationtest

SOAPUI

SOAPUI is the framework to test SOAP WS
Has a GUI
Good documentation
Understands
�  Authentication
�  Headers
�  Etc.

Can be used to Fake SOAP WS

35 https://leanpub.com/integrationtest

SOAPUI usage

Get WSDL
Either online
Or from a file

Create MockService
Craft the adequate response

Run the service

Point the dependency to localhost

36 https://leanpub.com/integrationtest

MockResponse can be (very) dynamic

Craft multiple response, serve one
depending on request
In a sequence
Randomly
From XPath
�  Matching the SOAPUI name for the response

From Query
�  Same as above with a level of indirection

Script (yes, we can)

Craft a single response, with dynamic
placeholder(s)
Script the placeholder value

W
hi

re
lin

g
D

er
vi

sh
es

 o
f t

he
 M

ev
le

vi
 o

rd
er

, d
an

se
 1

 b
y

C
la

ud
e

V
al

et
te

37 https://leanpub.com/integrationtest

Challenges to the previous scenario

Craft the adequate response?
More likely get one from the real WS
And tweak it

Running in an automated way
Save the project
Get the SOAPUI jar
Read the project and launch

38 https://leanpub.com/integrationtest

SOAPUI automation

WsdlProject project = new WsdlProject();
 String wsdlFile = "file:src/test/resources/chapter7/
ip2geo.wsdl”;
 WsdlInterface wsdlInterface = importWsdl(project,
wsdlFile, true)[0];
 WsdlMockService fakeService =
project.addNewMockService("fakeService");
 WsdlOperation wsdlOp =
wsdlInterface.getOperationByName("ResolveIP");
 MockOperation fakeOp =
fakeService.addNewMockOperation(wsdlOp);
 MockResponse fakeResponse =
fakeOp.addNewMockResponse("fakeResponse");
 fakeResponse.setResponseContent("<soapenv:Envelope ...</
soapenv:Envelope>");
 runner = fakeService.start();

39 https://leanpub.com/integrationtest

Faking Web Service in real-life

Use the same rules as for UT
Keep validation simple
Test one thing
�  One Assert
�  Or a set of related ones

Keep setup simple
Don’t put complex logic
�  Don’t put too much logic
�  Don’t put logic at all

Duplicate setup in each test
�  Up to a point

A
ut

ho
r:

I,
ro

lf
B

In-container Testing

41 https://leanpub.com/integrationtest

Upping the ante

Testing collaboration is nice

Faking infrastructure dependencies is nice

But didn’t we forget the most important
dependency?

42 https://leanpub.com/integrationtest

The container!

“Proprietary” container
Spring

Application Server
Tomcat
JBoss
<Place your favorite one here>

43 https://leanpub.com/integrationtest

Spring

So far, we can use:
Real beans
�  Service
�  Controller

Test beans on fake resources
�  Datasource

What about the configuration?
In Unit Tests, we set dependencies
�  The real configuration is not used
�  Ergo, not tested!

44 https://leanpub.com/integrationtest

Testing configuration

Configuration cannot be monolithic
Break down into fragments
Each fragment contains a set of either
�  Real beans
�  Fake beans

R
ud

st
on

 M
on

ol
ith

 M
ay

 2
01

3
by

 A
ng

el
a

Fi
nd

la
y

45 https://leanpub.com/integrationtest

Data source configuration fragment management example

Different configuration
fragments
Production JNDI fragment
Test in-memory fragment

46 https://leanpub.com/integrationtest

Data source configuration sample

<beans ...>
 <jee:jndi-lookup id="ds" jndi-name="jdbc/MyDS" />
</beans>

<beans ...>
 <bean id="ds" class="o.a.t.jdbc.pool.DataSource">
 <property name="driverClassName”
 value="org.h2.Driver" />
 <property name="url" value="jdbc:h2:~/test" />
 <property name="username" value="sa" />
 <property name="maxActive" value="1" />
 </bean>
</beans>

47 https://leanpub.com/integrationtest

Fragment structure

1.  Main fragment
Repository
Service
etc.

2.  Prod DB fragment

3.  Test DB fragment

48 https://leanpub.com/integrationtest

Tips

Prevent coupling
No fragments reference in fragments
Use top-level assembly instead
�  Tests
�  Application Context
�  Webapps

Pool exhaustion check
Set the maximum number of connections in the
pool to 1

Compile-time safety
Use JavaConfig
Not related to testing J

49 https://leanpub.com/integrationtest

And now, how to test?

Get access to both
The entry point
And the “end” point

Spring Test to the rescue
Integration with common
Testing frameworks
�  JUnit
�  TestNG

S
t L

ou
is

 G
at

ew
ay

 A
rc

h
19

16
" b

y
D

irk
 B

ey
er

 -
O

w
n

w
or

k.

50 https://leanpub.com/integrationtest

Favor TestNG

Extra grouping
Per layer
Per use-case
Name your own

Extra lifecycle hooks

Better parameterization
Data Provider

Ordering of test methods

51 https://leanpub.com/integrationtest

Spring TestNG integration

AbstractTestNGSpringContextTests
AbstractTransactionalTestNGSpringContextTests

Configurable context fragments
@ContextConfiguration

Inject any bean in the test class
If necessary, applicatonContext member from
superclass

52 https://leanpub.com/integrationtest

Sample TestNG test with Spring

@ContextConfiguration(
 classes = { MainConfig.class, AnotherConfig.class
})
public class OrderIT extends
AbstractTestNGSpringContextTests {

 @Autowired
 private OrderService orderService;

 @Test
 public void should_do_this_and_that() {
 orderService.order();
 ...
 }
}

53 https://leanpub.com/integrationtest

Profiles

Profiles are an alternative to fragments
Instead of putting beans in different files, tag them

A profile is just a label

Each bean (or config class) can be tagged
with a profile

Activating said profile at context creation
will make Spring create the bean and put it
in the context
Bean tagged with inactivated profiles won’t be
created

Beware, you’re shipping test config into
production!!!

54 https://leanpub.com/integrationtest

Managing profiles

@Bean
@Profile("aProfile")
public Object aBean() {
 ...
}

@ActiveProfiles
public class MyTest
extends... {
 ...
}

55 https://leanpub.com/integrationtest

Testing with the DB (or other transactional resources)

Transactions
Bound to business
functionality
Implemented on Service layer

With DAO
Use explicit transaction
management
@Transactional

56 https://leanpub.com/integrationtest

Transaction management tip

Tests fail… sometimes
How to audit state?
By default, Spring rollbacks
transactions

General configuration
@TransactionConfiguration(
 defaultRollback = false
)
Can be overridden on a per-
method basis
�  @Rollback(true)

57 https://leanpub.com/integrationtest

Sample Transaction management

@ContextConfiguration
@TransactionConfiguration(defaultRollback = false)
public class OverrideDefaultRollbackSpringTest
 extends AbstractTransactionalTestNGSpringContextTests {

 @Test
 @Rollback(true)
 public void transaction_will_be_rollbacked() { ... }

 @Test
 public void transaction_wont_be_rollbacked() { ... }
}

58 https://leanpub.com/integrationtest

Spring MVC webapps Testing

Require a context hierachy
Parent as main context
Child as webapp context
@ContextHierarchy

Require a webapp configuration
@WebAppConfiguration

59 https://leanpub.com/integrationtest

Spring MVC test sample

@WebAppConfiguration
@ContextHierarchy({
 @ContextConfiguration(classes = MainConfig.class),
 @ContextConfiguration(classes = WebConfig.class)
})
public class SpringWebApplicationTest
 extends AbstractTestNGSpringContextTests {

 ...
}

60 https://leanpub.com/integrationtest

Entry points for testing Spring webapps

At the HTML level

At the HTTP level

At the Controller level
Like standard Java testing

"L
ah

nt
un

ne
l W

ei
lb

ur
g"

 b
y

ru
pp

.d
e

- O
w

n
w

or
k.

61 https://leanpub.com/integrationtest

Tools for testing webapps

HTML testing tools
Interact with HTML/CSS
�  Fill this field
�  Click on that button

HTTP testing tools
�  Send HTTP requests
�  Get HTTP responses

62 https://leanpub.com/integrationtest

Drawback of previous approaches

Very low-level
Fragile!
Remember that testing is
about ROI
�  Breaking tests with every

HTML/CSS change is the worst
way to have positive ROI

�  (There are mitigation
techniques à out of scope)

A
ttr

ib
ut

io
n:

 ©
 M

ila
n

N
yk

od
ym

, C
ze

ch
 R

ep
ub

lic

63 https://leanpub.com/integrationtest

Drawback of Testing with controllers as entry point

Bypass many URL-
related features
Interceptors
Spring Security
etc.

C
on

tro
lle

r S
C

S
I.J

P
G

 b
y

R
os

co

64 https://leanpub.com/integrationtest

Spring Test to the rescue

Spring Test has a large
chunk dedicated to MVC
Since 3.2

Can test with URL as
entry-points

Fluent API with static
imports

C
oa

st
gu

ar
d

H
el

ic
op

te
r (

80
16

05
06

77
)"

 b
y

P
au

l L
uc

as
 fr

om
 L

ei
ce

st
er

sh
ire

, U
K

 -
C

oa
st

gu
ar

d
H

el
ic

op
te

r

65 https://leanpub.com/integrationtest

Spring MVC Test overview

66 https://leanpub.com/integrationtest

MockMvc class responsibilities

Request builder
Configures the Fake request

Request matcher
Misc. assertions

Request handler
Do something
�  OOB logger

67 https://leanpub.com/integrationtest

Available configuration on Request Builder

HTTP method
GET
POST
etc.

HTTP related stuff
Headers
Content

JavaEE related stuff
Parameters
Request attributes
Session
etc.

68 https://leanpub.com/integrationtest

Request Builder sample

MockHttpServletRequestBuilder builder =
 get("/customer/{id}", 1234L)
 .accept("text/html")
 .param("lang", "en")
 .secure(true);

GET /customer/1234?lang=en HTTP/1.1
Accept: text/html

69 https://leanpub.com/integrationtest

You can use constants in your @RequestMapping

@Controller
public class MyController {

 public static final PATH = "/customer/${id}";

 @RequestMapping(PATH)
 public String showCustomer() {...}
}

MockHttpServletRequestBuilder builder = get(PATH, 1L);

70 https://leanpub.com/integrationtest

Available Request Matcher

Entry point is MockMvcResultMatchers

Provides static methods returning
RequestMatcher implementations
“Grouping” classes that return them

71 https://leanpub.com/integrationtest

Methods returning matchers

Checks result is a
Forward
�  Either exact
�  Or regexp

Redirect
�  Either exact
�  Or regexp

JSON payload

a
sa

fe
ty

 w
ax

 m
at

ch
 b

ox
 a

nd
 m

at
ch

es
 b

y
A

at
ha

va
n

ja
ffn

a

72 https://leanpub.com/integrationtest

Methods returning grouping classes

Request class

Handler class
Controller

Content class

Cookie class

Status class
HTTP code

Flash class
(Attributes, not the techno)

View class

Model class

 "O
ve

ja
s

en
 P

at
ag

on
ia

 -
A

rg
en

tin
a"

 b
y

w
rit

te
ca

rlo
sa

nt
on

io

73 https://leanpub.com/integrationtest

Spring Pet Clinic

74 https://leanpub.com/integrationtest

Integration Testing on Spring Pet Clinic

@WebAppConfiguration
@ContextHierarchy({
 @ContextConfiguration("classpath:spring/business-config.xml"),
 @ContextConfiguration("classpath:spring/mvc-core-config.xml")
})
@ActiveProfiles("jdbc")
public class PetControlIT extends
AbstractTestNGSpringContextTests {

 @Test
 public void should_display_create_form() throws Exception {
 WebApplicationContext wac = (WebApplicationContext)
applicationContext;
 MockMvc mvc =
 MockMvcBuilders.webAppContextSetup(wac).build();
 MockHttpServletRequestBuilder newPet =
 get("/owners/{ownerId}/pets/new", 1);
 mvc.perform(newPet)
 .andExpect(view().name("pets/createOrUpdatePetForm"))
 .andExpect(model().attributeExists("pet"));
 }
}

75 https://leanpub.com/integrationtest

The JavaEE world

JavaEE has unique
challenges
CDI has no explicit wiring
�  You can @Veto you own

classes
�  But no compiled ones

Different application servers
�  Same specifications
�  Different implementations

76 https://leanpub.com/integrationtest

Deploy only what you want

Standalone API to deploy
only resources relevant
to the test
Just pick and choose

Maven Integration
Gradle too…

77 https://leanpub.com/integrationtest

Shrinkwrap sample

String srcMainWebapp = "src/main/webapp/";
ShrinkWrap.create(WebArchive.class, "myWar.war")
 .addClass(MyService.class)
 .addPackage(MyModel.class.getPackage())
 .addAsWebInfResource("persistence.xml",
 "classes/META-INF/persistence.xml")
 .addAsWebInfResource(
 new File(srcMainWebapp, "WEB-INF/page/my.jsp"),
 "page/my.jsp")
 .addAsWebResource(
 new File(srcMainWebapp, "script/my.js"),
 "script/my.js")
 .setWebXML("web.xml");

78 https://leanpub.com/integrationtest

Maven integration sample

File[] libs = Maven.resolver()
 .loadPomFromFile("pom.xml")
 .importDependencies(COMPILE, RUNTIME).resolve()
 .withTransitivity().asFile();
ShrinkWrap.create(WebArchive.class, "myWar.war")
 .addAsLibraries(libs);

79 https://leanpub.com/integrationtest

Different application servers

Abstraction layer to
Download
Deploy applications
Test

Container adapters
TomEE
JBoss
Weld
etc.

Full Maven integration

80 https://leanpub.com/integrationtest

Arquillian Test sample

public class ArquillianSampleIT extends Arquillian {

 @Inject
 private MyService myService;

 @Deployment
 public static JavaArchive createDeployment() {
 return ...;
 }

 @Test
 public void should_handle_service() {
 Object value = myService.handle();
 Assert.assertThat(...);
 }
}

81 https://leanpub.com/integrationtest

Arquillian configuration sample

<arquillian xmlns="http://jboss.org/schema/arquillian"
 xmlns:xsi="..."
 xsi:schemaLocation="
 http://jboss.org/schema/arquillian
http://jboss.org/schema/arquillian/arquillian_1_0.xsd">
 <container qualifier="tomee" default="true">
 <configuration>
 <property name="httpPort">-1</property>
 <property name="stopPort">-1</property>
 </configuration>
</arquillian>

https://leanpub.com/integrationtest

Twitter: @itfromtrenches

