;_s(_,z EVED

ORACLE

YLYY LYY YL Y Y ”
- - =

=

~a

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 2

Future of Java

Java 9 and beyond

Vladimir lvanov
HotSpot JVM Compiler
October 21, 2014

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 4

WORK IN
ROGRESS

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Program Agenda

E» Overview
B Project Jigsaw
E» Project Valhalla

E» Project Panama

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Java Language-VM co-evolution
Where to put new features?

* Do it all in the front-end compiler
* Generics, checked exceptions, autoboxing

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Java Language-VM co-evolution
Where to put new features?

* Do it all in the front-end compiler
* Generics, checked exceptions, autoboxing

* Do it mostly in the VM

* New bytecodes, constant types, classfile attributes, privileged runtime, Unsafe
* Front-end compiler is just syntax for VM features

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Java Language-VM co-evolution
Where to put new features?

* Do it all in the front-end compiler
* Generics, checked exceptions, autoboxing

* Do it mostly in the VM
* New bytecodes, constant types, classfile attributes, privileged runtime, Unsafe

* Front-end compiler is just syntax for VM features

* Mix and match
* VM provides sensible low-level building blocks
* Front-end compiler uses building blocks to implement feature

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Language-VM co-evolution
The balancing act

* Try to balance
— Keep Java language complexity isolated from VM
— Avoiding mismatch between language and VM

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

10

Language-VM co-evolution
The balancing act

* Try to balance
— Keep Java language complexity isolated from VM
— Avoiding mismatch between language and VM

* How to win: find key language-agnostic VM/JDK improvements
— Example: Lambda metafactory
— Other compilers are free to use — or not

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

11

Language-VM co-evolution
The balancing act

* Try to balance
— Keep Java language complexity isolated from VM
— Avoiding mismatch between language and VM

* How to win: find key language-agnostic VM/JDK improvements
— Example: Lambda metafactory
— Other compilers are free to use — or not

* What not to do: push Java’s wildcards into VM type system
— A naive version of reification would do this

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

12

Project Jigsaw

Java Modularization

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

13

Project Jigsaw

Java Modularization

Copyright © 2014, Oracle and/or its affiliates.

All rights reserved.

14

Project Jigsaw
Motivation

* Scalability

* Performance

* Security

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

15

Project Jigsaw
Scalability

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

16

Project Jigsaw
Scalability

m
-
>
w
=
[z}
o
-
o
c

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

17

JDK
tools.jaxws tools.base

devtools

Project Jigsaw

tools
ﬂ
: tools.jaxws tools.base
cosnamjng
management.iiop =gy
° g corba
: devtools
crypto management oolsjre %
kerberos
rowset =<\
—
rmi '
- namin '
Javafx % ’ jdbc\ httpserver
sctp prefs jx.annotations
instrument > base ”
N
script € < nashorn

S Java

< ~ ORACLE

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

19

hotspot.agent

rmic xml.ws
javadoc xml.bind jconsole jemd jdi smartcardio
\compiler attach crypto.ec
crypto.pkes1l
httpserver : jvmstat hprof.agent
7~ naming.rmi jdwp.agent
N
S =\ _ ‘:__ localedata
, naming
=\ ~ sctp
compact2 \ _
¢ \ zipfs
security.auth
compactl i \
\ scripting.
nashorn

logging scripting

|

charsets

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Project Jigsaw

tools

cosnaming

management.iiop ——
corba

>

tools.jaxws

v

ools.jre

tools.base

devtools

httpserver

jx.annotations

Crypto management
kerberos
rowset =<\
N—
rmi '
: naming \ '
javafx % idbc
t\auth tls
sctp
instrument > base X<
N
script <€ <

S Javar

<<— " ORACLE

nashorn

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

21

Project Jigsaw

tools

cosnaming

management.iiop ——
corba

>

tools.jaxws

v

ools.jre

tools.base

devtools

httpserver

jx.annotations

Crypto management
kerberos
rowset =<\
N—
rmi '
: naming \ '
javafx % idbc
t\auth tls
sctp
instrument — > base S <
N
script <€ <

S Javar

<<— " ORACLE

nashorn

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

22

Project Jigsaw

javafx

crypto

—3$» base

script

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

nashorn

23

* class Jmod

*'jar \

*.Jmod >J11nk

.jar

$JRE/bin/java
/11b/ ...

\

JVM image

//

Fat binary

=S 201 cle and/or its affiliates. All rights reserved. Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Project Jigsaw
Opportunities for performance improvements SIAVARCME/Jre/Lib/rt. jar | BOOISaD

Class Loader

* Improved class loading architecture T
— fast class lookup sonvascae/fre/Lib/axt/e jux | EXtansion

Class Loader

|

System
CLASSPATH
9 Class Loader
Default JVM Class Loaders
Custom Class Loaders
User Defined User Defined User Defined
Class Loader Class Loader Class Loader

T

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 25

Project Jigsaw
Opportunities for performance improvements

* Improved class loading architecture
— fast class lookup

java

cryp

\) base

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

scrip

nashorn

26

Project Jigsaw
Opportunities for performance improvements

* Improved class loading architecture
— fast class lookup

java

cryp

\) base

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

scrip

nashorn

27

Project Jigsaw
Opportunities for performance improvements

* Improved class loading architecture
— fast class lookup

java

cryp

\) base

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

scrip

nashorn

28

Project Jigsaw
Opportunities for performance improvements o

* Improved class loading architecture -
— fast class lookup ~~—— base

* Aggressive inlining

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

scrip

nashorn

29

Project Jigsaw
Opportunities for performance improvements o

* Improved class loading architecture -

— fast class lookup ~~—— base
* Aggressive inlining
* Ahead-Of-Time compilation

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

scrip

nashorn

30

Project Jigsaw
Opportunities for performance improvements o

* Improved class loading architecture -
— fast class lookup ~~—— base

scrip nashorn

* Aggressive inlining
* Ahead-Of-Time compilation

* JVM-specific memory images
—e.g. application Class Data Sharing (CDS)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Project Jigsaw
Opportunities for performance improvements

* Improved class loading architecture
— fast class lookup

* Aggressive inlining
* Ahead-Of-Time compilation
* JVM-specific memory images

* Removal of unused fields/methods/classes

java

cryp

\) base

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

scrip

nashorn

32

Project Jigsaw
Security

sun.*
* 1nternal.*

cle and/or its affiliates. All rights reserved. Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Project Jigsaw
Security

Jright €207] cle and/or its affiliates. All rights reserved. Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Project Jigsaw

Non-goals

* not a replacement for Maven/Gradle

* multiple version management is out of scope

* interoperability with other package managers
— Project Penrose for OSGi

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

35

Project Valhalla

The hall of valervalue

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 36

Value-based class

final class Point {
public final int x;
public final int y;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

37

Value-based class

Point[] points = |header

y

1

x|y

I

x|y

I I

v x| vy
I
ny

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

38

Value-based class

Point[] points = |header

for (Point p : points) {
sum += p.X + p.y;

¥

I 0 O
|
v y
I
X |y
I Il
X |y
Il Il
¥ x| vy
I
v X y
Il
¥ x |y

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

39

Value-based class

int[] xPoints header

int[] yPoints = |header

Copyright © 2014, Oracle and/or its affiliates. All rights reserved

40

Value-based class

int[] xPoints

header | X X X X X X

int[] yPoints = |header|y | Y |y |Y | VY| Y

assert(xPoints.length == yPoints.length);

for (int i = ; i < xPoints.length; i++) {
sum += XxPoint[i] + yPoint[i];

¥

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

41

Value-based class

int[] points

header

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

42

Value-based class

int[] points = header| x |y | x|y | x|y | x|y x

assert(points.length % 2 == 0);

for (int 1 = @; 1 < points.length; i=i+2) {

¥

points[i] + points[i+1];

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

Value-based class

final class Point {
public final int x;
public final int y;

¥

class Rectangle {
public final Point cornerl
public final Point corner2

Rectangle r

header

J

J

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

44

Value-based class

final class Point {
public final int x;
public final int y;

¥

class Rectangle {
public final Point cornerl
public final Point corner2

Rectangle r

header

X

J

J

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

45

Make pointers optional!

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

46

“Use of identity-sensitive operations
on instances of value-based classes
may have unpredictable effects and

should be avoided.”

http://docs.oracle.com/javase/8/docs/api/java/lang/doc-files/ValueBased.html

“Codes like a class, works like an int!”

— John Rose, Brian Goetz, Guy Steele
“State of the Values”

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 48

Don’t make user choose between
abstraction and performance!

Value class

value class Point {
public final int x;
public final int y;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

50

Why value types?

Motivation

* Smaller footprint
— no object header

* Better locality
— no dereference

* Simpler semantics
— no identity, no aliasing

* No allocation

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

51

Values in the JVM

* Primitives and references

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

52

Values in the JVM

* Primitives and references

* Problems

— Composite values
* objects are expensive to construct

— Control of concurrent side effects (JMM)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

53

Value Types: concurrent side effects

value class Point {
public final int x;
public final int y;

¥

class Rectangle {
public final Point cornerl
public final Point corner2

J

Rectangle r

header

X

Rectangle r

5 header

Copyright © 2014, Oracle and/or its affiliates. All rights reserv

ed.

54

Value Types: concurrent side effects

value class Point {

Rectangle r

public final int x;
public final int y;

header

X

¥

class Rectangle {

Rectangle r

public Point cornerl; header

public volatile Point corner2;

Copyright © 2014, Oracle and/or its affiliates. All rights reserv

ed.

55

Value types

* Value types are heterogeneous aggregates, like classes
— Borrow many concepts from classes — methods, fields, etc
— Declared like classes — with restrictions

°* No inheritance
* No mutation

* No cyclic containment

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

56

Value types

The restrictions

* No locking

* No identity comparison (or, if forced, loose specification)
* No identity hash code

* No cloning

* No finalizer

|H

* “null” is not a value
* No visible side effects

* No sub-class-ing (subtyping via extension)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

57

Value types

The permissions

* Customized boxes are available (at nominal cost)

* Whole values can be assighed

— Structure tearing is controlled: Nothing halfway between A’ and 'B’
* Methods and fields can be defined (public/package/private)

* Via the boxes, all the comforts of objects:
— Object.toString etc
— Interfaces: Comparable, etc
— Reflection

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

58

Example: methods on a value type

value class Point {
public final int x;
public final int y;

public boolean equals(Point that) {
return this.x == that.x & & this.y == that.y;
}

private static String strValueOf(Point p) { .. }

public String toString() { return strValueOf(this); }

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

59

Example: coding with values

static final Point ORIGIN = __ MakeValue(0, 0);

static Point displace(Point p, int dx, int dy) {
if (dx == 0 && dy == 0)
return p;

Point p2 = _ MakeValue(p.x + dx, p.y + dy);

assert(!p.equals(p2));
return p2;

Selected details

Point[] <:? Object]]

Selected details

Point[] points

= |header| X | VYV | X | V| x| VYIX|Y | Xx|Y

Value Types

JVM view

* New bytecodes (vaload, vnew, ...)
* New types (interface,class,...value)
* New array layouts (array-of-values)

* Multi-word atomicity support (volatile vars)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Oracle Confidential —

63

Use cases

* Numerics: complex, decimal, rarely-big-num, etc.

* Native types: int128 t, vectors, unsigned, safe native pointers

* Algebraic data: optional (no box), choice-of, unit (no bits)

* Tuples: multiple-value return! (requires specialization machinery also)
* Cursors: unboxed iterators, STL-style bounds

* Flat data: values naturally represent pointer-poor data structures

* Caveat: values are not structs.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

64

Generic Specialization
Motivation

ArraylList<integer>

Generic Specialization
Motivation

ArrayList<int>

Objects
* Object, String, ..., MyClass, ...,

Integer, Long, ...

VS Primitives

— 8 primitive types (+ reference)

* boolean, byte, short, char, int, long, float,
double

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

67

Objects
* Object, String, ..., MyClass, ...,

Integer, Long, ...

VS

Primitives
— 8 primitive types (+ reference)

* boolean, byte, short, char, int, long, float,
double

— Value types
* User-defined

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

68

Generic Specialization
Motivation

ArrayList<Point>

Generic Specialization

class Box<T> {

T val;
public Box(T val) { this.val = val; }
public T get() { return val; }

Generic Specialization

class Box<Object> {
Object val;

public Box(Object val) { this.val = val; }
public Object get() { return val; }

Generic Specialization

class Box<int> {

int

public
public

val;

Box(int val) { this.val = val; }

int get()

{ return val; }

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

72

Generic Specialization

class Box<any T> {

T val;
public Box(T val) { this.val = val; }
public T get() { return val; }

Generic Specialization

class Box extends Object {
private final Object t;

public Object get() {
©: aload ©
1: getfield #2 //Field t:LObject;
4: areturn

}

Generic Specialization

class Box extends Object {
private final int t;

public int get() {
©: aload ©
1: getfield #2 //Field t:I;
4. ireturn

}

Generic Specialization

class Box extends Object {
private final Object*T t;

public Object*T get() {
©: aload ©
1: getfield #2 //Field t:LObject;
4: areturn*T

}

Generic Specialization

Box<lnteger> :> Box

Generic Specialization

Box<int> :>? Box

Generic Specialization

Box<int> X Box

Generic Specialization

Box<int> box = new Box<int>(1);

Copyright © 2014, Oracle and/or its affiliates. All rights reserve

d.

80

Generic Specialization

Box<int> box = new Box<int>(1);

Box${T=int}?

Copyright © 2014, Oracle and/or its affiliates. All rights reserve

d.

81

ClassDynamic
Invokedynamic for class generation

* The previous description sounds a lot like an indy callsite!
— Bootstrap = specialization transform
— Static args = class to specialize plus type substitutions
— Together, these compose a structural description of a class

— Type uses are compared structurally: the same if bootstrap and static args are the
same

 Classdynamic = structural description of a dynamically generated class

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

82

ClassDynamic
Invokedynamic for class generation

* Strawman proposal: create a new constant pool type, dynamic class
— Whose structure looks like a bootstrap + static args

— Allow dynamic class wherever nominal type uses are allowed
* (Actual classfile representation is TBD)

— Expository notation: classdyn { bootstrap(args) }
— So List<int> would be written as
* classdyn { JavaSpecializer(List, int) }
* VM knows nothing about semantics of any given bootstrap
— But there may be agreement between compiler and bootstrap

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

83

ClassDynamic

* Classdynamic can represent any mechanical class transform
— Generic specialization (if the underlying class is suitably annotated)
— Dynamic proxies
— Synchronized wrappers
— Forwarding proxies
— Unreflectors
— Tuples (*)

— Function types (*)

* Moves code generation from compile time to runtime

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

84

Specialization Challenges
Generic Methods

<T>T identity(T t) { return t; }

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

85

Specialization Challenges
Generic Methods

* Same challenges as class specialization, and then some
— Adding new methods to existing classes is painful

— We could statically generate specializations for all primitives
* But this would fall apart for value types

— So need a mechanism for hooking into nominal method linkage

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

86

Specialization Challenges
When generic code is too generic

* Suppose | write a generic class ArrayList<any T>
— Can | provide a hand-written replacement for ArrayList<boolean> ?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

87

Specialization Challenges
When generic code is too generic

* Suppose | write a generic class ArrayList<any T>
— Can | provide a hand-written replacement for ArrayList<boolean> ?

— ... hand-written replacement for a single method
* Arraylist<int>.contains()

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

88

Specialization Challenges
When generic code is too generic

* Suppose | write a generic class ArrayList<any T>
— Can | provide a hand-written replacement for ArrayList<boolean> ?

— ... hand-written replacement for a single method
* Arraylist<int>.contains()

— a specific instantiation of a generic method

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

89

Specialization Challenges
When generic code is too generic

* Suppose | write a generic class ArrayList<any T>
— Can | provide a hand-written replacement for ArrayList<boolean> ?
— ... hand-written replacement for a single method

* Arraylist<int>.contains()
— a specific instantiation of a generic method

—add new member for some specialization
* e.g. ArrayList<int>.sum()

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

90

VarHandles
Current situation

* Support for atomicity and fencing is limited
— Accesses to volatile fields automatically fenced, others not
— Fenced operations and atomic operations (CAS) available through Unsafe

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

91

VarHandles
Current situation

* Support for atomicity and fencing is limited
— Accesses to volatile fields automatically fenced, others not
— Fenced operations and atomic operations (CAS) available through Unsafe

* sun.misc.Unsafe methods

— Fenced loads/stores
— Atomic updates (CAS)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

92

VarHandles
Current situation

* Support for atomicity and fencing is limited
— Accesses to volatile fields automatically fenced, others not
— Fenced operations and atomic operations (CAS) available through Unsafe

* sun.misc.Unsafe methods
— Fenced loads/stores
— Atomic updates (CAS)

* j.u.c.atomic.Atomic* classes

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

93

VarHandles
The bad and the ugly

* Atomic™ classes have overhead
— Not used in j.u.concurrent classes

* sun.misc.Unsafe is... unsafe, not “portable”, and going away
— CAS is too important to relegate

* No unified/safe model for accessing on and off-heap

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

94

VarHandles
JEP 193: Enhanced Volatiles

 Safe, performant, enhanced atomic
—access to field and array elements

* Replace nearly all usages of Unsafe in java.util.concurrent classes

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

95

VarHandles
Method handles for data

* VarHandle is like method handles for data

— Abstracts over location — static fields, instance fields, arrays, off heap
— Supports explicit fenced and atomic operations

» Safer than Unsafe, as fast as MethodHandle

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

96

VarHandles: language support?

class Usage {
volatile int count;

int incrementCount() {

¥

return count.volatile.incrementAndGet();

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

97

VarHandles API

VarHandle extends MethodHandle:

MethodHandle COUNT getVolatile = MethodHandle.lookup()..;
COUNT _getVolatile.invokeExact(..);

MethodHandle COUNT_ compareAndSet.invokeExact();
COUNT_getVolatile.invokeExact(..);

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

98

VarHandles API

public abstract class VarHandle extends .. {
public final native

@PolymorphicSignature

Object getVolatile(Object... args);

}

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

99

Project Panama
Bridging the gap

S Javar

<<— " ORACLE

Caribbean Sea

COSTA

RICA
Colén /7

Panama Canal ;.

?. “*;\

Golfo de
Panamid

COLOMBIA

PACIFIC
OCEAN

100 km
T miles

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

100

“If non-Java programmers find some library useful and
easy to access, it should be similarly accessible to

Java programmers.”
— John Rose, JVM Architect, Oracle Corporation

JNI

@since 1.0

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 102

JNI

A victim of its own success?

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 103

JNI

Usage scenario

User Code

U Cote
e
e
gLy

Java

C/native

Target Library

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 104

JNI

Java:

public class GetPid {

¥

public static native long getpid();

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

105

JNI

Java:

public class GetPid {
public static native long getpid();
}

C/C++:

get pid.h
JNIEXPORT jlong INICALL Java GetPid getpid (JINIEnv *, jclass);

get pid.c
jlong INICALL Java_GetPidJINI getpid(JINIEnv *env, jclass c) {
return getpid();

¥

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 106

JNI: Method Invocation

Before call

1. if (GC_locker::needs_gc())
SharedRuntime::block _for jni_critical();

2. transition to thread _in_native

3. unpack array arguments

4. call native entry point

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 107

JNI: Invocation
After call

1. call native entry point
2. check for safepoint in progress

3. check if any thread suspend flags are set

— call into JVM and possibly unlock the JNI critical if a GC was suppressed while in the
critical native

4. transition back to thread _in_Java

5. return

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 108

sun.misc.Unsafe
Anti-JNI

Unsafe.getUnsafe().putint(new Object(), O, 0)

Unsafe.getUnsafe().putint(null, O, O)

How many of you have used the Unsafe API?

— John Rose, JVM Architect, Oracle Corporation

@ JVM Language Summit 2014

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 112

How many of you have used the Unsafe API?

A lot of you. Gosh. I'm sorry.

— John Rose, JVM Architect, Oracle Corporation

@ JVM Language Summit 2014

Better JNI

Easier, safer, faster!

Better JNI

pid t getpid();

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 115

Better JNI: Easier

public interface GetPid {
}

long getpid();

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 116

Better JNI: Easier

public interface GetPid {
long getpid();
}

LibraryLoader<GetPid> loader = FFIProvider
.getSystemProvider()
.createlLibrarylLoader(GetPid.class);

Better JNI: Easier

public interface GetPid {
long getpid();
}

LibraryLoader<GetPid> loader = FFIProvider
.getSystemProvider()
.createlLibrarylLoader(GetPid.class);

GetPid getpid = loader.load("c");

getpid.getpid();

Better JNI: Faster

callg <getpid address>

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 119

Optimize checks

void run(MyClass obj) {
obj.f1(); // NPE
obj.f2(); // NPE
obj.f3(); // NPE

Optimize checks

void run(MyClass obj) {
if (obj == null) jump throwNPE stub;
call MyClass::f(obj);
call MyClass::f1(obj);
call MyClass::f3(obj);

Optimize checks

void run(MyClass obj) {

obj
obj
obj

.hative
.hative

~uncl(); // chec
~unc2(); // chec

Ks & state trans.
Ks & state trans.

.hative

~unc3(); // chec

Copyright © 2014, Oracle and/or i

Ks & state trans.

its affiliates. All rights reserve

d.

122

Optimize checks

void run(MyClass obj) {
if (!performChecks()) Jjump failed stub;

call transJavaToNative();

MyClass::nativeFuncl(env, obj);
MyClass: :nativeFunc2(env, obj);
MyClass::nativeFunc3(env, obj);

call transNativeToJava();

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 124

Better JNI: Safety

° no crashes

* no leaks

* no hangs

* no privilege escalation
* rare outages

* no unguarded casts

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

125

Better JNI: Trust levels
Untrusted

[SECURITY
CHECK

ALL PERSONS AND PROPERTY
ARE SUBJECT TO SEARCH

NO PACKAGES, BACKPACKS,
COOLERS OR PARCELS

® NO WEAPONS OR FIREARMS

@ NO EXPLOSIVES OR FLAMMABLES
® NO KNIVES OR SHARP OBJECTS

@ NO PEPPER SPRAY OR MACE

PLEASE REPORT ANY SUSPICIOUS

ACTIVITY TO SECURITY IMMEDIATELY

S v,

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

126

Better JNI: Trust levels
Trusted

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 127

Better JNI: Trust levels
Privileged

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 128

Better JNI: Easier, Safer, Faster!

* Native access between the JVM and native APIs
— Native code via FFls (JNR is starting point)
— Native data via safely-wrapped access functions
— Tooling for header file APl extraction and APl metadata storage

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 129

Better JNI: Easier, Safer, Faster!

* Native access between the JVM and native APIs
— Native code via FFls (JNR is starting point)
— Native data via safely-wrapped access functions
— Tooling for header file APl extraction and APl metadata storage

* Wrapper interposition mechanisms, based on JVM interfaces
—add (or delete) wrappers for specialized safety invariants

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 130

Better JNI: Easier, Safer, Faster!

* Native access between the JVM and native APIs
— Native code via FFls (JNR is starting point)
— Native data via safely-wrapped access functions
— Tooling for header file APl extraction and APl metadata storage

* Wrapper interposition mechanisms, based on JVM interfaces
—add (or delete) wrappers for specialized safety invariants

* Basic bindings for selected native APIs

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. |

131

Foreign layouts

* Native data requires special address arithmetic
— Native layouts should not be built into the JVM (sorry, no native classes)
— Native types are unsafe (hello, C!), so trusted code must manage the bits

* Solution: A metadata-driven Layout API

* As a bonus, layouts other than C and Java are naturally supported
— Network protocols, specialized in-memory data stores, mapped files, etc.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 132

Scalability

Project Jigsaw Eerormance

http://openjdk.java.net

Open]DK

Vpeuallzed Generics
a

Project Valhalla Vaus.ees

Foreign Function Interface

Project Panama Data zlout Control

Open)DK

http://openjdk.java.net

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 135

Thank youl

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. | 136

;_s(_,z EVED

ORACLE

