A love/hate relationship:

The JVM/OS
dialectic

Marcus Lagergren, Oracle

A love/hate relationship:

NNaneKkTnKa
JVM/OS

Marcus Lagergren, Oracle

A love/hate relationship:

The JVM/OS
dialectic

Marcus Lagergren, Oracle

A love/hate relationship:

The JVM/OS
dialectic

(and the hardware...)

Marcus Lagergren, Oracle

A love/hate relationship:

The JVM/OS
dialectic

(and the hardware...)

Marcus Lagergren, Oracle
Fredrik Ohrstrom, Spotify

The Legal Slide

"THE FOLLOWING IS INTENDED TO OUTLINE OUR
GENERAL PRODUCT DIRECTION. IT IS INTENDED FOR
INFORMATION PURPOSES ONLY, AND MAY NOT BE
INCORPORATED INTO ANY CONTRACT. IT IS NOT A
COMMITMENT TO DELIVER ANY MATERIAL, CODE, OR
FUNCTIONALITY, AND SHOULD NOT BE RELIED UPON
IN MAKING PURCHASING DECISION. THE
DEVELOPMENT, RELEASE, AND TIMING OF ANY
FEATURES OR FUNCTIONALITY DESCRIBED FOR
ORACLE'S PRODUCTS REMAINS AT THE SOLE
DISCRETION OF ORACLE.™

Agenda

In the borderlands between hardware, OS and
JVM, both good and bad things happen

Computer history

How do they affect each other?
Where is it all going?

Who am I?

@lagergren

Who am I?

IDON'T ALWAYS CODEINA
*—’%ETU)SE DO

¢!

BUT WHEN | DO, IT'S NOT
DYNAMIC LANGUAGES

Who am I?

mlvm-dev@openjdk.java.net
nashorn-dev@openjdk.java.net
https://avatar.java.net

Who am I?

H, |

ISTORY.COM |

Who am I?

/

TRY

NOT TO CRY

Who is Fredrik?

Who is Fredrik?

WANTS T0 BECOME AN
INTELLECTUALPROPERTY

lnww |

LIKES IT

Who is Fredrik?

W'ho is Fredrik?

Professional Expertise Distilled

Oracle JRockit

The Definitive Guide

Foreword by Adam Messinger,
Vice President of Development in the Oracle Fusion Middleware group

Marcus Hirt Marcus Lagergren [PACKT] {e'p're’“r_gr“i_gﬁgg

PUBLISHING

The Past

The Past

(Skipping very quickly over a tremendous
amount of hardware)

Texas Instruments Tl 99/4a

* 1979-1984
* Contains an OS and a GPL interpreter
* Device drivers (DSRs) could be written in GPL

Texas Instruments Tl 99/4a

1979-1984
Contains an OS and a GPL interpreter
Device drivers (DSRs) could be written in GPL

They intended to execute GPL bytecode
natively

— But they never did

VIC 20 and Commodore 64

* 1980-1986

VIC 20 and Commodore 64

* 1980-1986

http://codebasebt4.org

VIC 20 and Commodore 64

* 1980-1986

VIC 20 and Commodore 64

* 1980-1986

* Basic interpreter written in C on my Mac
— 1000x faster than a physical 6502

Nothing new under the sun?

Advantages of writing programs in machine language:

. Speed - Machine language is hundreds, and in some cases thousands of times

faster than a high level language such as BASIC.

2. Tightness - A machine language program can be made totally "watertight,”
i.e., the user can be made to do ONLY what the program allows, and no more.
With a high level language, you are relving on the user not "crashing" the
BASIC interpreter by entering, for example, a zero which later causes a:

?DIVISICON BY ZEROC ERRCR IN LINE 830

READY.

In essence, the computer can only be maximized by the machine language
programmer.

...and stuff

MITS Altair 8800, Commodore PET 2001, Apple II, Atari
VCS, Tandy Radio Shack TRS-80, ABC 80, NASCOM-1, Sharp
MZ-80k, Atari 400/800, Mattel Intellivision, Tangerine
Microtan 65, HP-85, Sinclair ZX80, Acorn Atom, Sinclair
/X81, Osborne 1, IBM PC, BBC Micro, Sinclair ZX Spectrum,
Coleco Vision, GCE/MB Vectrex, Grundy Newbrain, Dragon
32, Jupiter ACE, Compaq Portable, Apple Lisa, Oric 1,
Mattel Aquarius, Nintendo Famicom/NES, Acorn Electron,
Sony MSX, Apple Macintosh, Sinclair QL, Amstrad
CPC-464, IBM PC AT, Tatung Einstein, Atari ST,
Commodore Amiga, Amstrad PCW, Sega Master System,
Acorn Archimedes, NeXT

The JavaStation

* 1996-2000

 Contains JavaOS, a micro kernel in C with an
interpreter

* Device drivers were written in Java

The JavaStation

1996-2000

Contains JavaOS, a micro kernel in C with an
interpreter

Device drivers were written in Java

They intended to execute bytecode natively
— But they never did

Intermediate Languages

Intermediate Languages

1966: O-code (BCPL)
1970: p-code (Pascal)
1979: GPL

1995: Java Bytecode

Intermediate Languages

* 1966: O-code (BCPL)

Intermediate Languages

e 1970: p-code (Pascal)

Intermediate Languages

e 1979: GPL

...and more stuff

Actionscript, Adobe Flash objects, BANCStar,
CLISP, CMUCL, CLR/.NET, Dalvik, Dis,
EiffelStudio, Emacs eLisp->bytecode,
Embeddable Common Lisp, Erlang/BEAM, Icon,
Unicon, Infocom/Z-machine text adventure
games, LLVM, Lua, m-code/MATLAB, OCaml,
Parrot Virtual Machine, R, Scheme 48, Smalltalk,
SPIN/Parallax Propeller Microcontroller,
SWEET16/Apple Il Basic ROM, Visual FoxPro
bytecode, YARV, Rubinius

Intermediate Languages

e 1995: Java Bytecode

Intermediate Languages

e 1995: Java Bytecode

— memory protection, type and control verification
and explicit security management, “sandbox”
model, “object orientation”

Intermediate Languages

e 1995: Java Bytecode

— memory protection, type and control verification
and explicit security management, “sandbox”
model, “object orientation”

e 1999: The JavaOS is discontinued

Intermediate Languages

Java source

Java bytecode

Machine code

Native Memory

Libc

0S

Hypervisor

Hardware

Microinstructions

C-like language
p—code with oo
x86 or ARM
0S/Linker occupies it
programmer friendly API to 0S
device drivers
device drivers

jitted x86 ops

Intermediate Languages

Java source C-like language
Java bytecode p—-code with oo
x86 or ARM
0S/Linker occupies it
programmer friendly API to 0OS
device drivers

device drivers

jitted x86 ops

To put it simply

* The JVM has OS-like behavior
— Threads
— I\/Iemory management/protection
— Locking
* All this is somewhat mitigated through libc &
other libraries

Threads

Threads

* Heavy weight processes

— Slow switching
— fork()

Threads

* Heavy weight processes

— Slow switching
— fork()

e Green threads

— Fast switching, difficult to implement
* Native Locks?

Threads

* Heavy weight processes

— Slow switching
— fork()

e Green threads

— Fast switching, difficult to implement
* Native Locks?

e MxN threads

— Even more difficult to implement

Threads

* The old standby: OS Threads
* No support for stack overflow

* By definition, no memory protection between
threads

Locks

Locks

SYNCHRONIZATION

IT'S WHAT
THREADS CRAVE

Thin Locks

public class PseudoSpinlock {

private static final int LOCK_FREE = O;

/

private static final int LOCK_TAKEN = 1,

public void lock() {
//burn cycles
while (cmpxchg(LOCK_TAKEN, &lock) == LOCK_TAKEN) {
micropause(); //optional
}

}

public void unlock() {
int old = cmpxchg(LOCK_FREE, &lock);
//gquard against recursive locks
assert(old == LOCK_TAKEN);

Thin Locks

* Use whatever atomic support there is in the
hardware / OS

* Cheap to lock and unlock, expensive to keep
locked

Fat Locks

* Use OS lock support

* Expensive to lock and unlock, cheap to keep
locked

* Need for more advanced synchronization
mechanisms

—wailt
—notify

Adaptive Behavior

 Profile based transmutation of thin locks to fat
locks

— ...and vice versa

— Nothing your C program can do

Adaptive Behavior

 Profile based transmutation of thin locks to fat
locks

— ...and vice versa

— Nothing your C program can do

* Biased locking

Adaptive Behavior

 Profile based transmutation of thin locks to fat
locks

— ...and vice versa

— Nothing your C program can do
* Biased locking
* Thread switching heuristics / Cache warmup

Adaptive Behavior

* Constant tension between OS switching and
Java switching.

— One example of a JVM/OS battle

Native Memory

Native Memory

0x0000...

Oxffff...

libjvm.so

c-heap

java-heap

stack

Native Memory

0x0000...

libjvm.so

c-heap

windows dlls

stack

Oxffff...

Native Memory Tracking

HotSpot:

java —-XX:NativeMemoryTracking=<summary|detaily Test
jemd <pid> VM.native_memory

JRockit:
USE_OS_MALLOC=0 TRACE_ALLOC_SITES=1 java Test
jremd <pid> print_memusage

Memory Models

Memory Models

public class WhilelLoop {
//can be accessed by other threads

private boolean finished;

while (!finished) {
do something..

Memory Models

public class WhilelLoop {
//can be accessed by other threads

private boolean finished;

boolean tmp = finished;
while (!tmp) {
do something..

Memory Models

public class WhilelLoop {
//can be accessed by other threads

private volatile boolean finished;

while (!finished) {
do something..

Memory Models

volatile int x;
int y;
volatile boolean finished;

x = 17;
y = 4711;
finished = true;

if (finished) {
System.err.println(x);
System.err.println(y);

Memory Models

volatile int x;
int y;
volatile boolean finished;

x = 17;
y = 4711;
finished = true;

if (finished) {
System.err.println(x);
System.err.println(y);

Memory Models

public class GadgetHolder ({
private Gadget theGadget;

public synchronized Gadget getGadget() {
if (this.theGadget == null) {
this.theGadget = new Gadget();

}
return this.theGadget;

Memory Models

public class GadgetHolder {
private Gadget theGadget;

public Gadget getGadget() {
if (this.theGadget == null) {
synchronized(this) {
if (this.theGadget == null) {
this.theGadget = new Gadget();

}
}

}
return this.theGadget;

Memory Models

public class GadgetHolder {
private volatile Gadget theGadget;

public Gadget getGadget() {
if (this.theGadget == null) {
synchronized(this) {
if (this.theGadget == null) {
this.theGadget = new Gadget();

}
}

}
return this.theGadget;

Memory Models

public class GadgetMaker ({
public static Gadget theGadget = new Gadget();

}

Taking Control of the OS

* Ta
* Ta
* Ta

Taking Control of the OS

King contro
King contro

King contro

of t
of t
of t

ne OS
ne native memory

ne C heap

Taking Control of the OS

Taking control of the OS
Taking control of the native memory

Taking control of the C heap

Well you can’t really, but you can do your best

Is the JVM an OS?

JRockit Virtual Edition
Azul

Cloudius

Jnode

Is the JVM an OS?

* JRockit Virtual Edition
* Implemented libc, libraries and the OS

— Not much required for a single process Java OS.
* Finally, the Java OS?

Is the JVM an OS?

Application Server

JVM

0S <eneral purpose 0S

Hypervisor

Is the JVM an OS?

Normal 0S

JRockit VE

Java.net

libc

TCPAP

Is the JVM an OS?

Add a cooperative aspect to thread switching
Zero-copy networking code

Reduce cost of entering OS

Balloon driver

Runs only on hypervisor

Pauseless GC

* Hope that a lot of data is thread local and
remains thread local

— (it usually is)

Pauseless GC

* Hope that a lot of data is thread local and
remains thread local

— (it usually is)

* Use one large global heap and one thread
local heap per thread

Pauseless GC

* Hope that a lot of data is thread local and
remains thread local

— (it usually is)

* Use one large global heap and one thread
local heap per thread

 |f thread local data is exposed to another
thread — promote to global heap

Pauseless GC

e \WWe need a write barrier

//x.field = vy
void checkWriteAccess(Object x, Object y) {
if (x.isOnGlobalHeap() && !y.isOnGlobalHeap()) {

GC.registerReferenceGlobalTolLocal(x, y);

Pauseless GC

e ...and aread barrier

//read x.field
void checkReadAccess(Object x) {
int myTid = getThreadId();

//1f this object is thread local &&

//belongs to another thread, evacuate to global heap

if (!x.isOnGlobalHeap() && !x.isInternalTo(myTid)) {
X .evaculateToGlobalHeap(); //painful

Pauseless GC

e Barriers have to extremely fast, or everything
will disappear in overhead

Pauseless GC

* Barriers have to extremely fast, or everything
will disappear in overhead

7 P
. ¢ \M\—\
."-rA 3 4 .

. (v

w2tz '

INTER-THREAD MEMORY ﬁﬂﬂTECjIﬂN?ator.net

Pauseless GC

 We can, because we own and implemented
the thread system

Even without Pauseless GC, for large app servers
with typical workloads, JRockit VE beat physical
Linux!

"HOW COOL
IS THATRI"

OS/JVM/Hardware improvements

Threading

Locking

Native memory usage

Virtual address memory usage/exhaustion
Stack overflows

Page protection

OS/JVM/Hardware improvements

* Trap on overflow arithmetic
* Read barriers

e Performance counters
— Instruction pointer (program counter) samples
— Cache misses

— Userland, please

So?

Advantages of writing programs in machine language:

. Speed - Machine language is hundreds, and in some cases thousands of times

faster than a high level language such as BASIC.

2. Tightness - A machine language program can be made totally "watertight,”
i.e., the user can be made to do ONLY what the program allows, and no more.
With a high level language, you are relving on the user not "crashing" the
BASIC interpreter by entering, for example, a zero which later causes a:

7DIVISICN BY ZERC ERRCR IN LINE 830

READY.

In essence, the computer can only be maximized by the machine language
programmer.

Conclusion

* |t doesn’t hurt to know what’s inside your
execution environment

* |n the future —the distance between
hardware, OS and runtime will decrease or
disappear altogether.

— Likely starting as described
— But possibly in ways we can’t forsee

