
Peter Lawrey

CEO and Principal Consultant

Higher Frequency Trading.
Presentation to Joker 2014 St Petersburg, October 2014.

Low level Java programming
With examples from OpenHFT

Higher Frequency Trading is a small
consulting and software development house
specialising in:

• Low latency, high throughput software

• 6 developers + 3 staff in Europe and USA.

• Sponsor HFT related open source projects

• Core Java engineering

About Us…

• CEO and Principal Consultant

• Third on Stackoverflow for Java,
most Java Performance answers.

• Vanilla Java blog with 3 million views

• Founder of the Performance Java User's
Group

• An Australian, based in the U.K.

About Me…

"I want to be able to read and write my
data to a persisted, distributed system,
with the speed of in memory data
structures"

What Is The Problem We Solve?

Agenda
What are our Open Source products used for?
Where to start with low latency?
When you know you have a problem, what can you do?

 Shares data structure between processes
 Replication between machines
 Build on a low level library Java Lang.
 Millions of operations per second.
 Micro-second latency. No TCP locally.
 Synchronous logging to the OS.
 Apache 2.0 available on GitHub
 Persisted via the OS.

Chronicle scaling Vertically and Horizontally

 Low latency persisted key-value store.
 Latency between processes around 200 ns.
 In specialized cases, latencies < 25 ns.
 Throughputs up to 30 million/second.

What is Chronicle Map/Set?

 ConcurrentMap or Set interface
 Designed for reactive programming
 Replication via TCP and UDP.
 Apache 2.0 open source library.
 Pure Java, supported on Windows, Linux, Mac OSX.

What is Chronicle Map/Set?

 Low latency journaling and logging.
 Low latency cross JVM communication.
 Designed for reactive programming
 Throughputs up to 40 million/second.

What is Chronicle Queue?

 Latencies between processes of 200 nano-seconds.
 Sustain rates of 400 MB/s, peaks much higher.
 Replication via TCP.
 Apache 2.0 open source library.
 Pure Java, supported on Windows, Linux, Mac OSX.

What is Chronicle Queue?

Chronicle monitoring a legacy application

Chronicle journalling multiple applications

Chronicle for low latency trading

Short demo using OSResizesMain

Note: The “VIRT” virtual memory size is 125t for 125 TB, actual usage 97M
System memory: 7.7 GB, Extents of map: 137439.0 GB, disk used: 97MB,
addressRange: 233a777f000-7f33a8000000
$ ls -lh /tmp/oversized*
-rw-rw-r-- 1 peter peter 126T Oct 20 17:03 /tmp/over-sized...
$ du -h /tmp/oversized*
97M /tmp/over-sized....

Where to start with low latency?

 What is the end to end use case you need to improve?
 Is it throughput or latency you need to improve?
 Throughput or average latency hides poor latencies.
 Avoid co-ordinated omission. See Gil Tene's talks.

You need to measure first.

Looking at the latency percentiles

 A commercial profiler. e.g. YourKit.
 Instrument timings in production.
 Record and replay production loads.
 Avoid co-ordinated omission. See Gil Tene's talks.
 If you can't change the code, Censum can help you tune
your GC pause times.
 Azul's Zing “solves” GC pause times, but has many
other tools to reduce jitter.

Tools to help you measure

 Reducing the allocation rate is often a quick win.
 Memory profile to reduce garbage produced.
 When CPU profiling, leave the memory profiler on.
 If the profiler is no long helpful, application
instrumentation can take it to the next level.

What to look for when profiling

When you know you have a problem, what
can you do about it?

 You can always reduce it further and further, but at
some point it's not worth it.
 For a web service, 500 MB/s might be ok.
 For a trading system, 500 KB/s might be ok.
 If you produce 250 KB/s it will take you 24 hours
 to fill a 24 GB Eden space.

Is garbage unavoidable?

A common source of garbage is Iterators.

for (String s : arrayList) { }

Creates an Iterator, however

for (int i = 0, len = arrayList.size(); i < len; i++) {

 String s = arrayList.get(i);

}

Doesn't create an Iterator.

Common things to tune.

BigDecimal can be a massive source of garbage.

BigDecimal a = b.add(c)
 .divide(BigDecimal.TWO, 2, ROUND_HALF_UP);

The same as double produces no garbage.

double a = round(b + c, 2);

You have to have a library to support rounding. Without it
you will get rounding and representation errors.

Common things to tune.

Be aware of your memory speeds.

concurrency Clock cycles Seconds

L1 caches multi-core 4 1 seconds

L2 cache multi-core 10 3 seconds

L3 cache socket wide 40-75 15 seconds

Main memory System wide 200 50 seconds.

SSD access System wide 50,000 14 hours

Local Network Network 180,000 2 days

HDD System wide 30,000,000 1 year.

To maximise performance you want to spend as much
time in L3, or ideally L1/L2 caches as possible.

Reducing garbage minimises filling your caches with
garbage.
If you are producing 300 MB/s of garbage your L1 cache
will be filled with garbage is about 100 micro-seconds,
your L2 cache will be filled in under 1 milli-second.

The L3 cache and main memory shared and the more
you use this, the less scalability you will get from your
multi-cores.

Memory access is faster with less garbage

Faster memory access
 Reduce garbage
 Reduce pointer chasing
 Use primitives instead of objects.
 Avoid false sharing for highly contended mutated values

Lock free coding
 AtomicLong.addAndGet(n)
 Unsafe.compareAndSwapLong
 Unsafe.getAndAddLong

Using off heap memory
 Reduce GC work load.
 More control over layout
 Data can be persisted
 Data can be embedded into multiple processes.
 Can exploit virtual memory allocation instead of
 main memory allocation.

Low latency network connections
 Kernel by pass network cards e.g. Solarflare
 Single hop latencies around 5 micro-seconds
 Make scaling to more machines practical when tens of
micro-seconds matter.

Reducing micro-jitter
 Unless you isolate a CPU, it will get interrupted by the
scheduler a lot.
 You can see delays of 1 – 5 ms every hour on an
otherwise idle machine.
 On a virtualised machine, you can see delays of 50 ms.
 Java Thread Affinity library can declaratively layout your
critical threads.

Reducing micro-jitter

Number of interrupts per hour by length.

http://openhft.net/
Performance Java User's Group.

@PeterLawrey
peter.lawrey@higherfrequencytrading.com

Q & A

http://openhft.net/

	Slide 1
	About Us…
	About Me…
	What Is The Problem We Solve?
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

